Oath Moloch Deployments

Andy Wick

Deployments

Oath has three different network types that we monitor, each with their own network design and scale.

- Office Employees, VPNs
 - \sim 50+ global offices, each with its own egress
 - 10 VPN concentrators
 - Centralized Elasticsearch cluster
- CiC Backoffice in a data center
 - Each location with its own Elasticsearch cluster
- Prod Production traffic
 - Each location with its own Elasticsearch cluster
 - Too much Gbps to capture everything
 - Some traffic we don't want to capture

Design

- AOL & Yahoo each had their own take on visibility
 - \circ Combined the best of both for Oath
- Zeek (Bro), Suricata, Moloch and other tools
- Run all tools on each visibility box instead of specialized boxes
- Use a few hardware configurations so easy to reuse
- Use an NPB to load balance traffic
- Watch traffic to/from "internet"
- For production reduce traffic
 - Analyze traffic for less then half
 - Save PCAP for even smaller percent

NPB

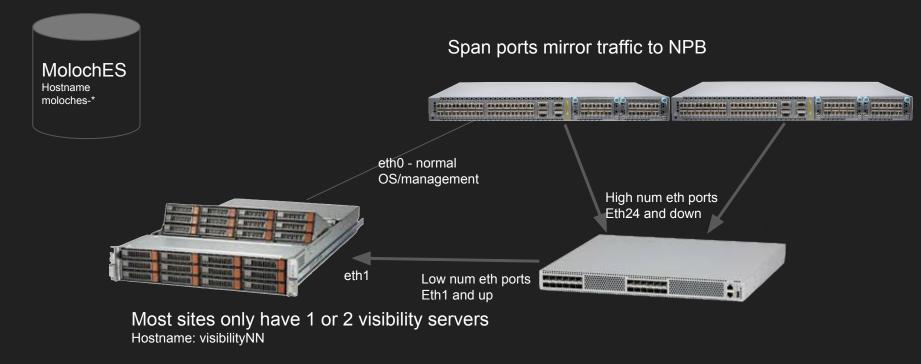
- Aggregates, filters, and load balances traffic
- Normal Arista switch, in a special mode
 - Packets flow one direction
 - Still need another switch for standard networking
- Input: Span ports or IXIA optical taps
- Output: Visibility Hosts
- Office/CiC: 7150S-24, 7280SE
- Production: 7508R 13RU, 6 power supplies, max 11,484W

Why use a NPB?

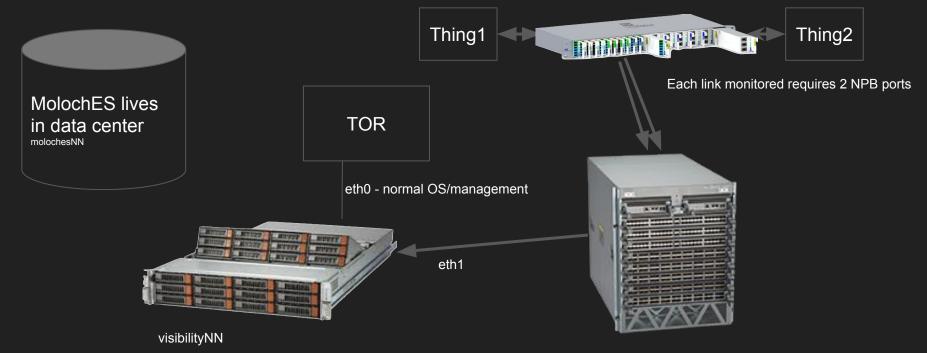
- Easy to add Moloch capacity
- Allows the networking team and security team to act more independently
 - Networking team can add more links at any time, just connect taps to NPB
 - The security team can add more tool capacity at any time, just connect tools to NPB
- Move the traffic filtering from a bpf to purpose built hardware
- Multiple tools can see the same traffic (or subset), again making network team happy they aren't involved
- Load balancing
- Handles HA issues of packets taking different paths
 - as long as all paths hit the same NPB

Visibility Hosts

- Bro is a memory/cpu hog
- Use afpacket for everything
 - requires a patch to Bro
- Want enough memory to potential run other tools and scanners in the future
- 2RU for space considerations, however boxes are deeper


Hardware Selected

- Keep number of configurations to a minimum
- Arista NPB
- Visibility boxes
 - New, Supermicro 6028R-E1CR24L
 - 24x10TB 128GB Office, CiC
 - 24x12TB 256GB Prod
- Moloches
 - Used, most are 5+ years old
 - 4x10TB 128GB 1 node Office, CIC
 - 4x12TB 256GB 2 node Prod
 - Session replication



Office/CiC Architecture

Prod Architecture

Reality

Things to watch for

- Hardware reliability
 - Might require more ES replication
 - Extra capture nodes
 - Extra hard drives on hand
- Configure multiple elasticsearch endpoints to handle failures
- Make sure Elasticsearch is configured with shard awareness
- Increase thread_pool.bulk.queue_size setting in ES
- Use ES 6.4.2 not 6.2.4 if using replication and ES 6.x
- Security, use iptables
- Number of ACLs NPB can handle

Sizing

- Office visibility sizing is done by number of employees.
 - Every site has an Arista NPB
 - Each visibility box can handle ~250 employees for desired retention
 - NPB is used for aggregation
- CiC & Prod sizing is done by avg Gbps
 - Every site has an Arista NPB
 - NPB aggregates traffic
 - NPB is used to drop traffic
 - Moloch rules are used to not save pcap

Example Sizing Sheet

Site	100G Links	40G Links	Avg Gbps	Pcap Gbps	TLS Gbps		Hosts Pcap	Hosts Gbps	Vis Hosts	ES TB	ES Hosts
Prod 1	20	4	500	75	150		50	57	57	2042	69
Prod 2	16	4	400	60	120		40	45	45	1633	55
CiC 1		4	10				7	3	7	69	3
CiC 2		4	20				14	5	14	137	5
ES days	28			Pcap (Pcap Gpbs = Avg Gbps * Pcap Traffic %						
ES usable disk	30			TLS G	TLS Gbps = Avg Gbps * TLS Traffic %						
Gbps per Vis	4										
Pcap Traffic %	15%			Hosts	Hosts Pcap = Pcaps Days / Disk / Pcap Gbps						
Vis usable disk	230			Hosts	Hosts Gbps = (Pcap Gbps + TLS Gbps) / Gbps per host					ost	
Pcap Days	14			ES TB	ES TB = (Pcap Gbps + TLS Gbps) * ES days * 0.045						
TLS Traffic %	30%			ES Ho	ES Hosts = Max(3,ES TB/Disk)						

Example Costing

Site	100G Links	40G Links	Vis Hosts	ES Hosts		100G Cards	10G Cards		NPB Cost	Vis Cost	ES Cost
Prod 1	20	4	57	69		2	2		\$210	\$1,140	\$414
Prod 2	16	4	45	55		2	1		\$195	\$900	\$330
CiC 1		4	7	3					\$30	\$140	\$18
CiC 2		4	14	5					\$30	\$280	\$30
									\$465	\$2,460	\$792
10G	\$15		100G C	ards = 2 '	* (1000	s)/36					
100G	\$40		10G Cards = Vis Hosts / 48								
Chassis	\$100										
Vis Host	\$20										
ES Host	\$6										
CiC NPB	\$30										

Reality Cost Breakdown

	NPB & Taps	Visibility	Elasticsearch	Total
Office	3.46%	12.98%	1.38%	17.82%
CiC	1.73%	10.81%	3.89%	16.44%
Prod	17.30%	34.60%	13.84%	65.74%
Total	22.49%	58.39%	19.12%	100.00%

Traffic Reduction

• NPB

- Drop by ip/port
- Simple perl script generates commands from CMDB
- Moloch
 - \circ Use rules to drop traffic
 - Don't save all the TLS packets
 - Helps with ES don't save file pos
 - Helps with Vis reduces pcap storage
 - Don't save SYN scans
 - Don't save some ad network traffic to clouds

NPB Sample

mail-list file:mail.yahoo.com tcp 25 ^(smtp) 9993 9995 mail-list imap-a-mtc-a.mx.aol.com tcp default ip access-list mail-list ip access-list mail-list ! file:mail.yahoo.com - ^(smtp):25 ips=100 permit tcp any host 1.2.3.4 eq 25 permit tcp host 1.2.3.4 eq 25 any permit tcp any host 4.3.2.1 eq 9993 9995 permit tcp host 4.3.2.1 eq 9993 999<u>5 any</u>

Prod Rules - Drop TLS after 10 packets

- name: "Drop tls"
when: "fieldSet"
fields:
 protocols:
 - tls
 ops:
 maxPacketsToSave: 10

Prod Rules - Drop SYN scans

- name: "Drop syn scan"
when: "beforeFinalSave"
fields:
 packets.src: 1
 packets.dst: 0
 tcpflags.syn: 1
 ops:
 _dontSaveSPI: 1

Prod Rules - Drop traffic to cloud

- name: "Drop tls by hostname"

- when: "fieldSet"
- fields:
 - host.http:
 - ad.doubleclick.net
 - foo.example.com
 - protocols:
 - tls
- ops:
 - _dontSaveSPI: 1

_maxPacketsToSave: 1

_dropByDst: 10

Other important high performance settings

IMPORTANT, libfile kills performance
magicMode=basic

Enable afpacket
pcapReadMethod=tpacketv3
tpacketv3BlockSize=8388608

Increase by 1 if still getting Input Drops
tpacketv3NumThreads=2

Start with 5 packet threads, increase by 1 if getting thread drops. You
do NOT need 24 threads :)
packetThreads=5

Pcap Encryption at rest with Moloch

- Each pcap file has its own data encryption key (DEK)
- The DEK is encrypted using a key encryption key (KEK)
- The encrypted DEK, IV, and KEK id used for each file is stored in ES
- The list of KEKs and currently used KEK are stored in the moloch config.ini file

[default] pcapWriteMethod=simple simpleEncoding=aes-256-ctr simpleKEKId=kekid1

[keks] kekid1=Randomkekpassword1 kekid2=Randomkekpassword2

QUESTIONS?